

Figure 1: WEF Logo [1]

Figure 2: AZ Water Logo [2]

Water Environment Federation and Arizona Waters Student Design Competition

> CENE - 486C April 16, 2021

Naif Alkahtani, Ahmad Almohammedsaleh, Brittany Riser, Juris Tan, Kyle Telesco

Project Description

- Lower the TOC levels less than 2 mg/L
- Reduce chemical usage

Constraints

- Meet water regulations from
 - Environmental Protection Agency (EPA)
 - Arizona Department of Environmental Quality (ADEQ)
 - Maricopa County Environmental Services Department (MCESD)
- Meet expected demand to treat 70MGD by 2050.



Figure 3: Project Location [3]

Current Layout

Primary Source	Salt River				Verde River			
	Average ¹	Range ¹	Count ¹	Non- Detect Count	Average ¹	Range ¹	Count ¹	Non- Detect Count
Alkalinity as	156	110-	503		191	111-256	437	-
		21/						
Arsenic (µg/ L)	0.0	3.2-0.9	133	-	0.0	3.0-14.1	155	-
Bromide (mg/L)	0.147	0.054- 0.231	142	10	0.106	0.052- 0.225	111	35
Conductivity (µS/cm)	1761	630- 2288	504	-	833	326- 1768	438	-
Nitrate (mg/L as N)	1.14	0.03- 5.36	438	66	0.81	0.003- 5.07	418	18
pH (SU)	8.23	7.89- 8.51	503	-	8.31	7.82- 8.74	437	-
Temperature (°C)	25.2	12.7- 29.1	503	-	19.5	10.8- 29.2	434	-
Total Organic Carbon	3.51	1.08- 6.46	282	-	3.67	0.46- 6.86	293	4
Turbidity	10.2	3.62-	504		15 1	2.83-	438	
¹ Non-detect date	a not included	157				87.2		

Figure 4: Existing Site Layout [4]

Figure 5: Provided Source Water Characteristics [4]

Demand Calculations

Table 1: Total Production

Demand per capita (gallons per day per pers	on)
$\bar{q} = \frac{Q_{2019}}{pop_{2019}}$	274
Total production needed by Build Out Date(m	gd)*
$Q_{build\ out} = \bar{q} * pop_{build\ out}$	90
Total production needed by NGWTP(mgd) ³	**
$Q_{NGWTP} = Q_{build\ out} - Q_{SVWTP}$	66

* The build out population was used because of its closeness to the 2050 population ** Daily Demand Factors were carried through from present WTP productions

Build Out Population: The maximum population for an area

Demand Calculations - Phasing

.

Production of NGWTP by Year					
	Deisgn				
Year Production(MG					
Phase 0	2021	45			
Phase 1	2030	60			
Phase 2	2050	70			

Table 2: Production Timeline

Design production based on population estimates

Even years & even productions

Matrix Criteria

Lifecycle Costs Cost estimation formulas <u>O&M</u> Cost estimation formulas Social & Environmental Factors Available literature **Process efficiency improvements** Staffing Levels Available literature Portion of O&M from Staffing **Process Efficiency Improvements** Process Dependent Feasibility/Constructability Complexity of design Resistance to dust storms/heat Alternative footprint <u>Weighting</u> Treatment Process Dependent

Preliminary Treatment

Screening

• Bar screen considered enough for preliminary treatment

Figure 6: RakeFlex Bar Screen [11]

Primary Treatment - Decision Matrices

Table 3: Primary Clarifier Decision Matrices

	Primary Clarifier								
	<u>Raw Value</u>								
Alternatives	Lifecycle Costs	M&O							
Alternatives	(\$)	(\$/yr)							
Best Value	750,000	103,500							
Rectangular	750,000	206,880							
Circular	864,600	103,500							
			<u>Wei</u>	ghted Sco	ore				
Alternatives	Lifecycle Costs	M&O	Social & Environmental Factors	Staffing Levels	Process Efficiency Improvements	Feasibility/ Constructability	Total Weighted Score		
Weight	2	2	1	1	3	3			
Rectangular	2.00	1.00	0.67	1.00	3.00	3.00	7.67		
Circular	1.73	2.00	1.00	1.00	1.00	2.00	6.73		

Primary Treatment - Design

$$v_s = \frac{g(\rho_s - \rho)d^2}{18\mu}$$

Equation 1: Stokes Equation for Laminar Flow

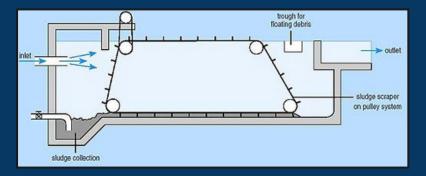


Figure 7: Rectangular Clarifier [5]

Table 4: Rectangular Clarifier Design

Rectangular clarifier

Dimensions of Clarifier	13.3m wide, 4.3m depth, 37.3m long
Phase 0 (2021) 45 MGD	1 Rectangular Tank Surface area : 496m ²
Phase 1 (2030) 60 MGD	Adding 1 Tank (Total 2 rectangular clarifiers) Total Surface area: 992m ²

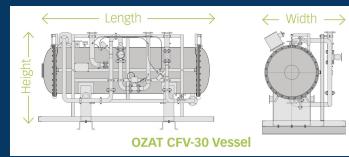

Disinfection - Decision Matrices

Table 5: Disinfection Decision Matrices

Disinfection									
Raw Value									
Alternatives	Lifecycle Costs (\$)	M&O (\$/yr)							
Best Value	1,769,525	77,407							
Pre-Ozonation (LOX) and UV (Trojan UV Signa)	24,255,528	2,641,729							
UV (Trojan UV Signa)	3,294,000	138,000							
Chlorination (Sodium Hypochlorite)	1,769,525	77,407							
Ozonation (LOX)	20,961,528	2,503,729							
Pre-Ozonation (LOX) and Chlorination (Sodium Hypochlorite)	22,731,053	2 <mark>,581</mark> ,135							
		Weigh	ted Score						
Alternatives	Lifecycle Costs	M&O	Social & Environmental Factors	Staffing Levels	Process Efficiency Improvements	Feasibility/ Constructability	Total Weighted Score		
Weight	2	1	1	1	4	1	. 10		
Pre-Ozonation (LOX) and UV (Trojan UV Signa)	0.15	0.03	1.00	0.50	4.00	0.80	6.48		
UV (Trojan UV Signa)	1.07	0.56	1.00	1.00	1.60	1.00	6.24		
Chlorination (Sodium Hypochlorite)	2.00	1.00	0.33	0.50	1.60	0.40	5.83		
Ozonation (LOX)	0.17	0.03	1.00	0.50	3.20	0.90	5.80		
Pre-Ozonation (LOX) and Chlorination (Sodium Hypochlorite)	0.16	0.03	0.33	<mark>0.33</mark>	4.00	0.20	5.05		

Disinfection (Ozone) - Design

Table 6: Ozone Design						
		Ozone				
Desired Ozone Dosage			4ppm (4mg/l)			
Ozone	Concentration in Feed Gas (assum	nption)	12%			
	Ozone Diffuser		Ozonia Dome Bubble Diffusers			
Required Ozone Generation Rate found for each phase			$O_3GenRate = Q * O_{3 dos} * 8.34/eff.$			
Required Contact Chamber Volume			$V = t_0 * Q$			
Ozone Contact Tank Dimensions Designed			6.6m deep X 3.4m wide X 16.5m long			
N	umber of Cells in Contact Chambe	er	10 (9 contact cells and 1 inlet cell)			
Phase 0	O_3 GenRate		1668lb/d			
(2021)	O ₃ Generator	2 Ozonia CFV-30 (1 for use, 1 for redundancy)				
45MGD	Contact Chambers Needed	2 (1 for use, 1 for redundancy)				
Phase 1	03GenRate	2594.67lb/d				
(2030)	O3 Generator	3 Ozonia CFV-30 (2 for use, 1 for redundancy)				
70MGD	Contact Chambers Needed	3	(2 for use, 1 for redundancy)			

Figure 8: Ozonia CFV-30 Generator [6]

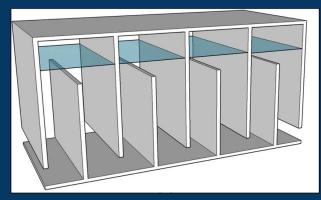


Figure 9: Diagram of Over-Under Contact Chamber [5]

Disinfection (UV) - Design

Figure 10: TrojanUV Signa Diagram [7]

Table 7: UV Design

UV					
TrojanUV Signa lamps will be used					
Each	TrojanUV solo lamp is 1000 Watts				
Phase 0	144 lamps				
(2021)	6 Banks-5 for flow, 1 for redundency				
45MGD					
Phase 1	Add 48 lamps (192 total)				
(2030)	8 Banks-7 for flow, 1 for redundency				
60MGD Phase 2	Add 24 Jamps (216 total)				
(2050)	Add 24 lamps (216 total)				
(2050) 70MGD	9 Banks-8 for flow, 1 for redundancy				

Figure 11: TrojanUV Signa Photo [7]

Secondary Treatment - Decision Matrices

Table 8: Secondary Clarifier Decision Matrices

	Secondary Clarifier								
	Raw Value								
Alternatives	Lifecycle Costs	M&O							
Alternatives	(\$)	(\$/yr)							
Best Value	336,854	<mark>5,053</mark>							
Circular	2,419,055	27,665							
Floc Blanket	336,854	5,053							
Rectangular	6,030,664	219,597							
Lamella/Plate	109,433,114	1,549,923							
			Weigh	nted Score	<u>e</u>				
			Social &	Staffing	Process Efficiency	Feasibility/	Total Weighted		
Alternatives	Lifecycle Costs	M&0	Environmental		and the second				
			Factors	Levels	Improvements	Constructability	Score		
Weight	1.5	1.5	1	1	3	2			
Circular	0.209	0.274	0.500	1.000	3.000	1.800	6.783		
Floc Blanket	1.500	1.500	0.214	0.200	1.800	1.000	6.214		
Rectangular	0.084	0.035	0.429	0.800	1.800	2.000	5.147		
Lamella/Plate	0.005	0.005	1.000	0.200	3.000	1.400	5.610		

Secondary Treatment - Design

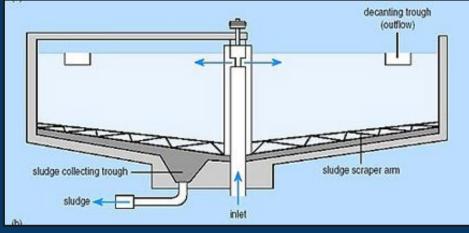


Figure 12: Circular Clarifier [5]

	Side water depth, m (ft)				
Tank diameter, m (ft*)	Minimum	Suggested			
Up to 12 (40)	3 (10)	3.7 (12)			
12 – 21 (40 – 70)	3.3 (11)	3.7 (12)			
21 - 30 (70 - 100)	3.7 (12)	4 (13)			
30 - 43 (100 - 140)	4 (13)	4.3 (14)			
>43 (140)	4.3 (14)	4.6 (15)			

Table 10: Recommended Clarifier Tank Depths [5]

$$v_s = \frac{g(\rho_s - \rho)d^2}{18\mu}$$

Equation 1: Stokes Equation for Laminar Flow

Final Design (14 m diameter)						
		Total Surface	Overdesign			
	Count	Area (m²)	Percentage			
Phase 0	4	616	18%			
Phase 1	6	924	32%			
Phase 2	6	924	14%			

Table 9 : Secondary Clarifier Design Phasing Information

Filtration - Decision Matrices

Table 11: Filtration Decision Matrices

			Filtration				
	Raw Value						
Alternatives	Lifecycle Costs (\$)	M&O (\$/yr)					
Best Value	8,854,154	200,000					
Rapid Sand Filter (Anthracite/Sand)	8,854,154	554,889					
Cloth Media Filter	10,000,000	200,000					
Slow Bio-Sand Filter	14,412,231	720,611					
Ultrafiltration	98,139,691	8,247,032					
Reverse Osmosis w/ Pre-Treatment	196,279,382	17,729,152					
			Weighted Score				
Alternatives	Lifecycle Costs	M&O	Social & Environmental Factors	Staffing Levels	Process Efficiency Improvements	Feasibility/ Constructabili ty	Total Weighted Score
Weight	2	2	1	1	3	1	
Rapid Sand Filter (Anthracite/Sand)	2.00	0.72	1.00	0.50	2.40	1.00	7.62
Cloth Media Filter	1.77	2.00	1.00	1.00	0.60	1.00	7.37
Slow Bio-Sand Filter	1.23	0.56	1.00	0.33	2.70	0.67	6.48
Ultrafiltration	1.00	0.02	0.33	0.33	3.00	0.33	5.02
Reverse Osmosis w/ Pre-Treatment	0.18	0.05	0.50	0.50	2.70	0.67	4.60

Filtration-Design

Table 12: Filtration Design

Rapid Sand Filtration-Veolia Filtraflo TGV			
	Phase 0 (2025) 45MGD	Phase 1 (2030) 60MGD	Phase 2 (2050) 70MGD
Desired Velocity (m/hr)	16	16	16
Total Required Filter Area, $A_T(m^2) = Q/V$	443.6	591.5	739.3
Minimum Filters Needed with filter size of $50m^2$ #Filters = $A_T/50m^2$	9	12	15
Number of Filters Total	10 (9 for treatment, 1 for redundancy)	14 (12 for treatment, 2 for redundancy)	16 (15 for treatment, 1 for redundancy)
Dimensions of Each Individual Filter	8m X 6m	8m X 6m	8m X 6m
Area of All Filters (m ²)	480	672	768
Total Depth of Media (m)	1.5	1.5	1.5
Height of Filtration Unit (including 1m for underdrain system, media, water level, 0.6m freeboard)	4.5m	4.5m	4.5m
Width of Unit (m)	18	18	18
Length of Unit (m)	38	50	56

Figure 13: Veolia FiltraFlo TGV Media View [8]

Solid Treatment

Table 13: Solids Decision Matrices

Biosolids				
<u>Raw Valu</u>	<u>e</u>			
Alternatives	Initial Investment(\$)			
Best Value	120,000			
Belt Filter Press	120,000			
Heat Drying	300,000			
Centrifuge Thickening	650,000			
Gravity Thickening	3,200,000			
	We	ighted Score		
Alternatives	Initial Investment	Total Lifecycle Cost	Social & Environmental Factors	Total Weighted Score
Weight	5	3	2	10
Belt Filter Press	5.00	3.00	2.00	10.00
Heat Drying	2.00	2.40	1.33	5.73
Centrifuge Thickening	0.92	2.70	1.78	5.40
Gravity Thickening	0.19	2.40	1.56	4.14

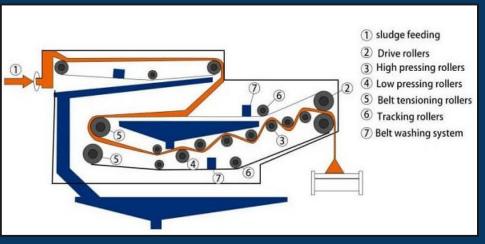
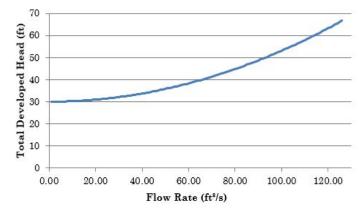
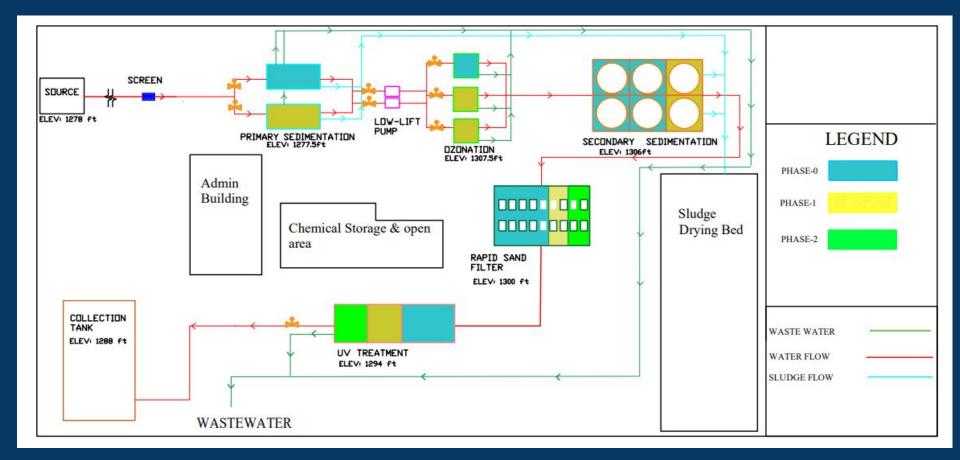
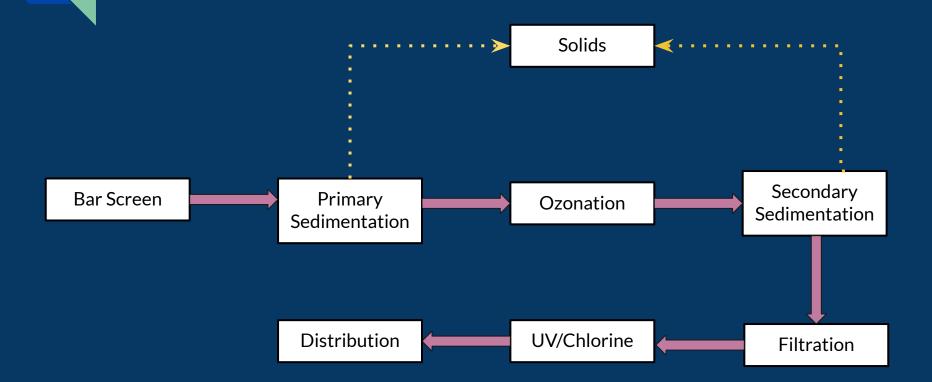


Figure 14: Belt Filter Press Diagram [9]

Hydraulics


Table 14:Pump Information


Maximum Flow	70	
Capacity (MGD)	, 0	
Pipe Material	Ductile Iron	
Pipe Diameter (ft)	3	
Number of Pumps	3 (1 for redundancy)	
Type of	Goulds 3420	
Pumps	centrifugal pump	
Capacity(GPM)	65,000	


Figure 16 : Centrifugal Pump [10]

PUMP 1

Final Design Summary - Plant Flow Chart

Final Design Summary - Treatment Phasing

Table 15: Design Summary					
	Ozone	Rapid Sand Filter (Anthracite/Sand)	UV Lights	Primary Clarifier	Secondary Clarifier
Phase 0 (2021) 45 MGD	2 Ozonia CFV- 30 generators [1 for treatment, 1 for redundancy] 2 Contact Chambers [1 for treatment, 1 for redundancy]	10 filters 480 m²	144 lamps 6 banks	1 Rectangular Tank Surface area: 496m ²	4 (14 m circular clarifiers) Surface area: 615m ²
Phase 1 (2030) 60 MGD	+1 Ozonia CFV-30 generator [2 for treatment, 1 for redundancy] +1 Contact Chamber [2 for treatment, 1 for redundancy]	+4 filters (14 total) 672 m²size	+48 lamps and 2 banks (Total 192 lamps, 8 banks)	+1 (Total 2 rectangular tanks) Total Surface area: 992 m ²	+2 (14m circular clarifiers) Surface area: 307m2 Total Surface area: 922 m ²
Phase 2 (2050) 70 MGD	-	+2 filters (16 total) 768 m²size	+24 lamps and 1 bank (Total 216 lamps, 9 banks)	-	-

Cost Analysis - Example Calculation

Calculating interest rate
 Initial year values
 Converted to present day money
 Grand Total

Principal & O&M Yearly Cost (Simple interest)

 $P = F(1+i)^{-n}$

Equation 2 : Simple Interest

O&M Total Cost (Uniform Series)

 $P = A\left(\frac{(1+i)^n - 1}{i(1+i)^n}\right)$

Equation 3 : Uniform Series

Table 16 : Example Cost Analysis Table					
Ozone					
Constants 1		Name	Value	Unit	
		Initial year 200		Year	
		Common Year	2021	Year	
		Year Difference	12	Year	
		Annual of Initial year CPI	214.537		
		January of 2021 CPI	261.582		
		Percentage increase between Years	22%	%	
		Per year Inflation	2%	%	
		Projected Present Inflation Rate	2%	%	
2	Initial year Money	Principal Cost	\$ 7,525,674	\$	
		O&M Yearly Cost	\$ 1,380,248	\$/yr	
Phase 0		Principal Cost	\$ 9,352,344	\$	
3	2021 Money	O&M Yearly Cost	\$ 1,715,268	\$/yr	
		O&M Total Cost	\$44,599,186	\$	
n nonrada barana katalan nanarayan n	Initial year Money	Principal Cost	\$ 9,665,965	\$	
initial year woney		O&M Yearly Cost	\$ 673,190	\$/yr	
Phase 1		Principal Cost	\$12,012,138	\$	
	2021 Money	O&M Yearly Cost	\$ 836,591	\$/yr	
		O&M Total Cost	\$18,231,483	\$	
Initial year Money Phase 2	Initial year Money	Principal Cost		\$	
		O&M Yearly Cost		\$/yr	
	2021 Money	Principal Cost	\$-	\$	
		O&M Yearly Cost	\$-	\$/yr	
		O&M Total Cost	<u>\$</u>	\$	
Completion	2021 Money	Total Cost	\$84,195,151	\$	

Cost Analysis - Totals

By Phase

Phase Completion Costs			
Phase 0	\$	83,476,642	
Phase 1	\$	43,979,156	
Phase 2	\$	7,633,875	
Grand Total	\$	135,089,673	

Table 17: Cost by Phase

By Process

Process Completion Costs			
Ozone	\$ 84,195,151		
Rapid Sand Filter			
(Anthracite/Sand)	\$ 22,129,395		
UV Lights	\$ 8,628,595		
Primary Clarifier	\$ 19,138,194		
Secondary Clarifier	\$ 998,338		
Grand Total	\$ 135,089,673		

Table 18: Cost by Process

Impacts

Table 19: Impacts

Social	Economic	Environmental			
Positive					
 Potable water is provided Reduced chlorine usage Quality potable water 	•Low cost treatment options •Low upkeep treatment options •Future proof	•Reduced chemical usage •Solids applications			
Negative					
•Odor •Noise	 Expensive disinfection 	•Disinfection byproducts (DBPs)			

References

[1] Water Environment Federation - WEF Home, "WEF Home." [Online]. Available: https://www.wef.org/.

[2] "AZ Water Association." [Online]. Available: https://www.azwater.org/.

[3] "Map of US," [Online]. Available: <u>https://www.mapofus.org/arizona/</u>.

[4] WEF, AZ Water Student Design Competition 2021, Gilbert: WEF, 2021.

[5] M. L. Davis, Water and Wastewater Engineering Design Principles and Practice, McGraw-Hill.

[6] SUEZ Water Technologies and Solutions, [Online]. Available:

https://www.suezwatertechnologies.com/products/disinfection-oxidation/ozoniadome-diffuser.

[7] TrojanUV Disinfection Technologies, [Online]. Available:

https://www.resources.trojanuv.com/wp-content/uploads/2020/12/TrojanUVSigna-Bro chure.pdf.

[8] "Veolia Water Technologies," [Online]. Available:

https://www.veoliawatertechnologies.com/asia/en/solutions/products/filtraflo-tgv.

[9] "Belt filter press," *Binfirst*, 24-Dec-2019. [Online]. Available:

https://www.binfirst.com/products/belt-filter-press/. [Accessed: 09-Mar-2021].

[10] 2021.<u>http://www.gouldspumps.com/ittgp/medialibrary/goulds/website/</u> Literature/Pump%20Selection%20Guide/Goulds_Rev_PSG.pdf.

[11] Duperon, "The Duperon FlexRake", Duperon Adaptive Technology, 2019, Saginaw, Missouri.

Questions?